

Date: July 31st, 2017

Rapise® Visual Language (RVL) User Guide

Version 5.2

Inflectra Corporation

Contents

Contents

About . 1

Columns . 5

Comments . 7

Conditions . 7

Actions . 11

Variables . 14

Assertions . 17

If-Else . 18

Parameters . 20

Maps . 23

Loops . 30

RVL Object . 31

Map Object . 32

About

RVL stands for Rapise Visual Language. It is inspired by well known software testing methodologies
Keyword Driven Testing and Data Driven Testing.

This section contains a review of current approaches and concepts to highlight the ideas behind RVL
design. You don’t need to read this section if you want to learn RVL. However you may need it if you
want to understand how it compares to other approaches and why we believe it is not just yet another
approach but the way forward to diminish struggling while building real live UI Automation.

Keyword Driven Testing

Keywoard Driven Testing separates the documentation of test cases -including the data to use- from
the prescription of the way the test cases are executed. As a result it separates the test creation
process into two distinct stages: a design and development stage, and an execution stage.

v 5.2 1

https://en.wikipedia.org/wiki/Keyword-driven_testing

Contents

A B C D

. First Name Last Name Age
Enter Patient John Smith 45
Enter Patient Sarah Connor 32

Keyword Driven Testing: Column A constains a Keyword, columns B, C, D provide parameters for a
Keyword.

Data Driven Testing

Data Driven Testing is the creation of test scripts to run together with their related data sets in a
framework. The framework provides re-usable test logic to reduce maintenance and improve test
coverage. Input and result (test criteria) data values can be stored in one or more central data sources
or databases, the actual format and organization can be implementation specific.

A B C

First Name Last Name Age
John Smith 45
Sarah Connor 32

Data Driven Testing: We have test input and expected output in data sources.

Gherkin / Cucumber

There are known approaches intended to make scripting more close to spoken languages.

This is a very wise approach improving test readability. The test case is described in Gherkin - busi-
ness readable, domain specific language. It describes behavior without detailing how that behavior is
implemented.

Essential part of this framework is implementation of Given-When-Then steps that should be done
with one of the common programming languages. Here is the place where the need in scriping skills
are still required.

Why RVL?

Initially Rapise has everything to build Data Driven and Keyword Driven test frameworks. Even without
RVL.

It is possible do define scenarios or keywords, connect to Spreadsheet or Database and build the test
set.

v 5.2 2

https://en.wikipedia.org/wiki/Data-driven_testing
https://github.com/cucumber/cucumber/wiki/Gherkin

Contents

Framework based approaches require one to split data from test logic and maintain them separately.
So: * When AUT or SUT changes (new theme, new widget, new layout) then test logic is updated and
data stays the same * When test scenarios are enriched or updated then test logic is kept intact and
only data sheets are updated.

The reality of this approach leads to some challenges. These challenges are common for all test
frameworks mentioned here.

1. Design of test scripts require scripting and programming skills. That person is likely to be a
programmer.

2. Design of good test data requires knowledge in target domain. For example, if you application
is for Blood Bank then one should have some medical skills. If it is some device control app,
then you should have engeneering knowledge about physical limitations of the device.

So in ideal world there are two persons working as a team: UI Automation scripting expert and target
domain specialist.

In reality we see that due to real life limitations it is common that all scripting and test data is done by
one person. It is either a programmer who gets familiar with target AUT domain or analyst who has
some scripting skills.

Reasons for struggling

There are several reasons that make a learning curve longer and adoption harder.

Syntax Sugar

We found a reason why people get stuck while trying to implement a test case.

Most of programming languages including JavaScript were designed by people with mathematical
background. So this statement appears clear and simple for a programmer:

Deposit('John', 'O\'Connor', 17.99);

Programmer easily reads this as:

Deposit $17.99 to John O'Connor

So what is the difference between these notations? We found that the first and most important difficulty
lays in so called syntactical sugar. Symbols ' " ; , . () [] { } & $ % # @ do
have meaning for language notation however are not important for understainding the matter.

This is true even for programmers. When switching from similarly looking languages some differences
easily cause frustration. For example, the same construct:

v 5.2 3

Contents

$a = "Number " + 1;

Means text concatenation in JavaScript, however the same is mathematical operation in PHP.

Comparison like:

if(value == "OK")

Is good for JavaScript or C# world and leads false results in Java.

So even if we have programming skills it is still a problem to switch from one language to another and
may produce potential issues.

Data Tables

With Keywword Driven and Data Driven approach we get a table that represents a sequence. Se-
quence of patients to proceed, sequence of user logins etc.

And sometimes we feel the lack of common debugging facilities: - run keyword for only one line, - start
from specific row, - or stop before processing specific line.

So here we get to a point where the table should better be a part of the script rather than just external
data source.

State of The Art

RVL reflects a common trend in programming languages where computational power and flexibility
are sacrificed towards clarity and readability.

Some language is reduced to a reasonable subset in the sake of more concise and focused presenta-
tion. Just couple of examples.

Jade template engine simplifies writing HTML pages by clearing syntax sugar (< > / %) so HTML
code:

<body>
<p class="greeting">Hello, World!</p>

</body>

Gets reduced to more textual view:

body
p.greeting Hello, World!

Go language is promoted as Go is expressive, concise, clean, and efficient.. In fact its authors sacri-
ficed many advanced features of common programming languages (classes, inheritance, templates)
to get more clarity. This is extremely important because sophisticated features produce sophisticated
problems that are hard to nail down. And if you deal with high-load distributed systems minor gain
through use of unclear feature may lead to major unpredictable loss.

v 5.2 4

http://learnjade.com/
https://golang.org/

Contents

RVL Concepts

RVL’s goal is to minimize the struggling.

1. We assume that one should have minimal care about the syntax sugar and syntax rules. This
means that we must avoid braces, quotes or any special symbols ' " ; , . () []
{ } & $ % # @ and make it possible to maintain the script without them.

2. We want script to be close to Keyword Driven andData Driven testing concept. So test data and
test results should be representable as data tables. This reduces the struggling of attaching the
data feed to a test set.

3. We still want to have a solid language. We seek for a balance between clarity and power of
language. So we want the script to be implemented on the same language. Both keyword,
scenarios and data feeds should be done in a same way. This means one RVL skill is requried
for everything.

4. In many cases grids or tables are used to represent test data. So we want the script itself to be
a grid. So all parts of it includeing data tables are debuggable as a part of the solid script.

5. When we think about working with table data the most common format that comes to our mind
is XLS, XLSX or CSV. These formats are supported by powerful tools that make it easier to
prepare data for feeding into the test set. So RVL is itself an .xls spreadsheet so its logic is
expressed right there.

6. Even with Spreadsheet there is a question what may be entered into the particular cell. With
RVL we have an editor where you start from left to right and each cell has limited number of
options. So if you don’t know language it will guide you.

Columns

RVL script is a spreadsheet containing set of 7 columns in fixed order:

Column View

• 1st Flow – Control flow. This column dedicated to specifying structural information such blocks,
Branches (If-Else), loops.

v 5.2 5

Contents

Also it contains information about single row and multi row comments. Possible values are
limited by the list:

• \# or // - single row comment

• /* - begin of multi row comment (comment is valid up to line starting with */)

• */ - end of multi row comment started earlier from /*

• If - conditional branch. Row type must be Condition. The row may be followed with one
or more ElseIf statements, zero or one Else statement and then should end with End.

• 2nd Type - Type of operation specified in this row. One of:

• Action - row defines an action. Action is a call for operation for one of the objects. Object is
defined in the next column. See Actions.

• Param - signals that this row contains action parameter or condition parameter defined in last
3 columns (ParamName, ParamType and ParamValue).

• Output - this type of row must go after last Param for an action and defines a variable that
should accept output value retured from the call to the Action.

• Variable - this row defines or assigns value to a local or global variable. See Variables.

• Assert - first row for the Assertion. See Assertions.

• Condition

• 3rd Object - Id of the object to be used for action. Rapise provides set of predefined global
objects and objects recorded/learned from the AUT.

• 4th Action - One of the actions. DoAction, DoClick, GetText etc.

• 5th ParamName - see Params for more information on last 3 columns

• 6th ParamType

• 7th ParamValue

In addition to these columns there may be any number of other columns used for storing supplemen-
tary data, comments, calculations, thoughts etc. Additional columns may be utilized for script itself
(i.e. contain expected values or reference data).

v 5.2 6

Contents

Comments

Single Row Comments

RVL has two types of single line comments depending on the purpose.

Sometimes comment is used to exclude line of code from execution.

There is a special type of single row comments intended to put long text comments into the document.

Single row comment is displayed as long text providing that: 1. Flow is set to # or // 2. Text is
completely typed into the Type cell. 3. Other cells after Type are empty.

In such case the text is displayed through the whole line:

Multiple Row Comments

Used to disable several rows of script:

Conditions

Conditions used in If and Assert statements.

Types of Conditions

Condition accepts one or two Params.

1. There might be just one Param. Such condition is called unary, for example param1 is
true or output1 is true.

2. There might be second Param. Such condition is called binary, for example param1 ==
param2.

3. Condition parameter may be either Param or Action output.
4. Param is some fixed value, variable or expression.

Binary condition with two Params named param1 and param2:

v 5.2 7

Contents

… Type … Action ParamName …

Param param1
Condition param1 == param2
Param param2

Binary condition with Action and Param named output1 and param2:

… Type Object Action ParamName …

Action MyButton GetText
Condition outpu1 == param2
Param param2

Binary condition with two Actions named output1 and output2:

… Type Object Action ParamName …

Action MyButton1 GetText
Condition outpu1 != output2
Action MyButton2 GetText

Unary condition with Param param1:

… Type … Action ParamName …

Param param1
Condition param1 IsFalse

Unary condition with Action output1:

… Type Object Action ParamName …

Action MyButton GetEnabled
Condition outpu1 IsTrue

All Conditions

Unary conditions with Param

v 5.2 8

Contents

Caption Description

param1 IsTrue Check if param1 is true
param1 IsFalse Check if param1 is false
param1 IsNull Check if param1 is null
param1 IsNotNull Check if param1 is NOT null
param1 IsSet Check if param1 is NOT null, false, 0, empty string or undefined
param1 IsNotSet Check if param1 is null, 0, false, empty string or undefined

Unary conditions with Action

Caption Description

output1 IsTrue Check if output1 is true
output1 IsFalse Check if output1 is false
output1 IsNull Check if output1 is null
output1 IsNotNull Check if output1 is NOT null
output1 IsSet Check if output1 is NOT null, false, 0, empty string or undefined
output1 IsNotSet Check if output1 is null, 0, false, empty string or undefined

Binary conditions with Params

Caption Description

param1 == param2 Check if param1 equals to param2
param1 != param2 Check if param1 NOT equal to param2
param1 > param2 Check if param1 is more than param2
param1 >= param2 Check if param1 is more or equal to param2
param1 <= param2 Check if param1 is less or equal to param2
param1 < param2 Check if param1 is less than param2
param1 contains param2 Check if param1 contains param2 as substring
CmpImage param1, param2 Compare 1st image and image represented by param2

Binary conditions with Action and Param

Caption Description

output1 == param2 Check if output1 equals to param2
output1 != param2 Check if output1 NOT equal to param2
output1 > param2 Check if output1 is more than param2
output1 >= param2 Check if output1 is more or equal to param2
output1 <= param2 Check if output1 is less or equal to param2

v 5.2 9

Contents

Caption Description

output1 < param2 Check if output1 is less than param2
output1 contains param2 Check if output1 contains param2 as substring
CmpImage output1, param2 Compare 1st image and image represented by param2

Binary conditions with Actions

Caption Description

output1 == output2 Check if output1 equals to output2
output1 != output2 Check if output1 NOT equal to output2
output1 > output2 Check if output1 is more than output2
output1 >= output2 Check if output1 is more or equal to output2
output1 <= output2 Check if output1 is less or equal to output2
output1 < output2 Check if output1 is less than output2
output1 contains output2 Check if output1 contains output2 as substring
CmpImage output1, output2 Compare 1st image and image represented by output2

And, Or Conditions

It is possible to make more complex conditions by using And and Or keyword in the Flow column.

Flow Type … Action ParamName ParamType ParamValue

If Param param1 variable Result1
Condition param1 IsFalse

And Param param1 variable Result2
Condition param1 IsTrue

… … … … … …

This pice forms a condition checking that Result1 is false AND Result2 is true at the same
time.

Flow Type Object Action ParamName ParamType ParamValue

If Action MyButton GetEnabled
Condition output1 IsFalse
Or Param param1 variable Result1
Condition param1 IsTrue
… … … … … …

v 5.2 10

Contents

This pice forms a condition checking that MyButton is Enabled OR Result2 is true at the same
time.

Examples

Condition is never used alone. You may find examples of conditions in chapters devoted to Assertions
and If-Then-Else.

Actions

In RVL Action always refers to an operation performed with object.

Flow Type Object Action ParamName ParamType ParamValue

Action MyButton DoClick x number 5
Param y number 7

If row type is Action then there must be Object and Action cells defined.

Note: In this example we call an operation that would look in JavaScript as follows:

SeS('MyButton').DoClick(5,7);

Object is an ID of learned or Global object. Available objects may be found in the Object
Tree:

v 5.2 11

Contents

Object tree contains list of available objects, including: 1. Local objects (1) learned recorded or learned
from the application under test. 2. Global object. Always available set of objects containing most
common utility functions and operations. 3. Functions. Represent global JavaScript functions. Each
time you define a global function in .user.js file it becomes available for calling from RVL with special
object ID Functions.

Each Object has its own set of actions. You may also see them in the object tree:

v 5.2 12

Contents

An Action may have any number of parameters. See Params for more info.

Editing Action

An Action may have both mandatory and optional params. When action is selected from the dropdown
its params are displayed:

By default RVL editor pre-fills only mandatory params for you when you select an action from the
dropdown. In this example DoLaunch has one mandatory parameter cmdLine so here is what
you get when you select it:

However the situation is differs if you hold the Shift key while choosing an Action from the dropdown:

You may see that all parameters are applied in this case.

• Note: if you you already have have the same action and select it with Shift key again, no
optional params are applied. You need to clean the Action cell and re-select it with Shift if you
want to achieve the desired effect.

Examples

Action without parameters

Action with single parameter. In RVL each parameter takes one line with Action=Param. How-
ever for the 1st param there is an exception. It may occupy the same line as Action itself:

Action withmany parameters:

v 5.2 13

Contents

Variables

In RVL, variables are useful for storing intermediate results as well as accessing and passing global
values to external JavaScript functions.

Variables may be used in Params to Conditions and in Actions.

Declaring and Assigning

This line declares a variable without any values. Its value may be assigned later:

Flow Type Object Action ParamName ParamType ParamValue

Variable MyVar1

This line declares and assigns value 5 to a variable MyVar2:

Flow Type Object Action ParamName ParamType ParamValue

Variable MyVar2 number 5

If the variable is declared earlier, then assignment just changes its value. If the variable is not yet
declared, then assignment is actually a declaration with assignment.

Using

Any Params value may accept a variable:

… Type … ParamName ParamType ParamValue

… Param text variable MyVar1

Any Params value may accept an expression using variables:

… Type … ParamName ParamType ParamValue

… Param text expression MyVar2 + 4

Any Action may write its return value to a variable using the Output statement:

Flow Type Object Action ParamName ParamType ParamValue

Action Global DoTrim str string text to trim
Output variable MyVar1

v 5.2 14

Contents

The Output value may then be used as a param value in actions, conditions, assertions and expres-
sions.

Local Variables

By default declared variables are assumed to be local. Local variables may be used only within the
current RVL script and not visible from other RVL scripts or JavaScript code.

Global Variables

You may have a JavaScript variable defined in the user Functions file (*.user.js), i.e.:

// Piece from MyTest1.user.js
var globalVar = "Value";

Then in the RVL you may declare globalVar as global and access it (read or assign values).
Declaring a variable as global is simple:

Flow Type Object Action ParamName ParamType ParamValue

Variable Global globalVar

Global variables are useful for exchanging and/or sharing data between different RVL scripts or be-
tween RVL and JavaScript.

Variable Actions

One may use an expression to change the value of a variable. Here are several common variable
operations that may be used to modify variable values:

1. Increment is an operation where numeric value is increased by 1 or any other specified value.
The variable must have a numeric value. Otherwise the result is NaN.

If no param to Increment is specified then 1 is assumed:

Flow Type Object Action ParamName ParamType ParamValue

Variable Increment numVar

Otherwise it is any value:

v 5.2 15

Contents

Flow Type Object Action ParamName ParamType ParamValue

Variable Increment numVar number value

2. Decrement is the same as increment but the value is subtracted from the variable.

3. Append adds the value as text to the specified variable. This operation is useful for constructing
text messages:

Flow Type Object Action ParamName ParamType ParamValue

Variable Append textVar string Final value:
Variable Append textVar variable numVar

In this example if textVarwas empty andnumVar had value5 then the final value of textVar
is the following text: Final value: 5

Examples

Variables may be declared as Local or Global. Declaration may or may not contain initial value

Variables may accept output from the Action:

Variables may be used as input to the Action:

v 5.2 16

Contents

Assertions

Assert is an essential operation for testing and validation. RVL provides special structure for it to make
it more readable.

Assertion has 2 parts: 1st row is Assert containing assertion message and then goes Condition:

… Type … Action ParamName …

Assert message string
Param param1
Condition condition statement
Param param2

Assertion first line is always the same except the Param Value.

In RVL Action always refers to an operation performed with object.

… Type Object Action ParamNameParamTypeParamValue

Assert message string Assertion text to be
displayed in the report

Param param1 string Text1
Condition param1!=param2
Param param2 string Text2

Examples

Compare object property InnerText with expected value:

Check if object exists on the screen:

Check if variable Age has value ‘74’:

v 5.2 17

Contents

If-Else

If using for branching statements in RVL.

Basic branch statement has 2 parts: 1st row is If flow with Condition:

If

Flow Type … Action ParamName …

If Param param1
Condition condition statement
Param param2
some actions go here

End

Actions after If condition and up to End statement are executed when condition is truth.

If-Else

If-Else statement is similar to If with one extension. It contains an alternative Else section
that is executed when If condition is false:

Flow Type … Action ParamName …

If Param param1
Condition condition statement
Param param2
some actions go here

Else
other actions go here

End

If-ElseIf

ElseIf is a way to establish a chain of conditions. Each condition is evaluated with previous is
false.

If-Else statement is similar to If with one extension. It contains an alternative Else section
that is executed when If condition is false:

Flow Type … Action ParamName …

If Param param1
Condition condition statement

v 5.2 18

Contents

Flow Type … Action ParamName …

Param param2
some actions go here

ElseIf Param param1
Condition condition statement
Param param2
other actions go here

End

There may be many ElseIf‘ blocks:

Flow Type … Action ParamName …

If Param param1
Condition condition statement
Param param2
some actions go here

ElseIf Param param1
Condition condition statement
Param param2
other actions go here

ElseIf Param param1
Condition condition statement
Param param2
other actions go here

End

And there might also be an Else block in the end:

Flow Type … Action ParamName …

If Param param1
Condition condition statement
Param param2
some actions go here

ElseIf Param param1
Condition condition statement
Param param2
other actions go here

ElseIf Param param1
Condition condition statement
Param param2

v 5.2 19

Contents

Flow Type … Action ParamName …

other actions go here
Else

other actions go here
End

Examples

Check if Log In link available. If so, do login:

Check if we use old version of OS and assign a variable OldWindows accordingly:

Parameters

The last 3 columns in the RVL table are used for passing parameters:

… ParamName ParamType ParamValue

… text string John Smith
… x number 5
… y number 7
… forceEvent boolean true

• 5th column - ParamName - name of the parameter. This column’s intention is readability and
it does not affect execution. However it names input parameters and makes it easier to under-
stand each provided input option.

v 5.2 20

Contents

• 6th column - ParamType - value type. This may be a basic scalar type (number, string,
boolean, object) as well as one of the following additionals ‘special’ types:

• – expression - any valid JavaScript expression that may involve global variables and
functions and local variables.

• – variable - the parameter value is read from a variable.

• – objectid - ID of one of the learned Objects.

• 7th column - ParamValue - a value that is acceptable for the specified ParamType. For
boolean it is true or false. For number is is any floating point number (i.e. 3.14).
For string, any text without quotes or escape signs.

Param Rows

In RVL each parameter takes one row:

… Type … ParamName ParamType ParamValue

… Param text string John Smith
… Param x number 5
… Param y number 7
… Param forceEvent boolean true

Param Arrays

Some methods accept arrays of values as input values. For example Tester.Message may
take its 1st message parameter as an array and prints them combined. Making an array is easy,
several consequent parameters having the same name are combined into an array, i.e.:

Flow Type Object Action ParamName ParamType ParamValue

Action Tester Message message string MyVar1
value:

Param message variable MyVar1
Param message string MyVar2

value:
Param message variable MyVar2

Should report a message like:

MyVar1 value: 25 MyVar2 value: 33

v 5.2 21

Contents

Mixed Rows

In some cases it is convenient to mix parameter cells with an Action or Condition.

For example, the 1st parameter of an Action may share the Action row:

Flow Type Object Action ParamName ParamType ParamValue

Action MyButton DoClick x number 5
Param y number 7

And this is equivalent to putting it in the next row:

Flow Type Object Action ParamName ParamType ParamValue

Action MyButton DoClick
Param x number 5
Param y number 7

Or param2 of the condition may be on the same row:

… Type Object Action ParamName ParamType ParamValue

Param param1 string Text1
Condition param1!=param2param2 string Text2

Which is equivalent to:

… Type Object Action ParamName ParamType ParamValue

Param param1 string Text1
Condition param1!=param2
Param param2 string Text2

This allows saving space while keeping same readability.

Map Params

If map is defined in the script it may be used directly as a parameter. ParamType should be set to Map
Name and ParamValue is a column (or row) name:

v 5.2 22

Contents

Maps

A Map is designed to be an easy way to define tables of data. Items in the map may be accessed by
name (if defined) or by index.

The indexed dimensions in themapmay also be iterated by the [Loop][Loops.md] function, thusmaking
it useful feature for Data-Driven Testing.

An RVL script has at least 7 columns. However the Map may take as many columns as needed.

Map Definition

Typical declaration of map looks like:

Flow Type Object Action ParamName ParamType ParamValue

Map MapTypeMapName
… … …
End

Where MapType is either inplace: Table, Rows, Columns, or external: Range or Database.

In-place maps

In-place map data is defined right in the RVL script. In-place map rows may be selected using This
flow or skipped with a Comment. So in-place maps serve as a part of the executable script.

v 5.2 23

Contents

• Table
• Rows
• Columns

External maps:

• Range
• Database

External maps are defined in an external spreadsheet, file or a database.

Using Maps

Once map is defined it may be used as a regular Object.

Reading in a Loop

See Loops part for Map type of loops.

Maps Types

Rows Map

A Rows Map is the most useful for data feeds. Each of the set of values is a row in a table that look
like:

v 5.2 24

Loops.md:Map

Contents

Flow Type Object Action ParamName ParamType ParamValue

Map Rows MapName
Col1 Col2 Col3 Col4
val11 val12 val13 val14
…
…

End

This and comments are specific features of the Rows Map. For example, only the 2nd row of data
will be executed in this case:

Flow Type Object Action ParamName ParamType ParamValue

Map Rows MapName
Col1 Col2 Col3 Col4
…

This …
…

End

Rows are designed to be iterated in a Loop

In real example it looks like this:

v 5.2 25

Contents

Comments may also be used to skip specific rows or row sets.

Columns Map

A Columns Map is a convenient way for representing data when you have many options combined
in few sets.

Flow Type Object Action ParamName ParamType ParamValue

Map ColumnsMapName
Row1 …
Row2 …
Row3 …

End

The same may be represented as Rows but would require many columns and sometimes it is harder
to read. So columns is ideal for storing configuration structures:

When a Columns Map is used in the Loop, then the iteration is performed through the columns and
addresses the rows by name within the loop. I.e. the 1st iteration chooses 1st column, 2nd goes to
2nd column and so on.

Table Map

A Table map has both columns and rows named.

Flow Type Object Action ParamName ParamType ParamValue

Map Table MapName
Col1 Col2 Col3 Col4

Row1 …
Row2 …

v 5.2 26

Contents

Flow Type Object Action ParamName ParamType ParamValue

Row3 …
End

When a Table Map is used in the Loop, then the iteration is performed through the columns and
addresses the rows by name within the loop. I.e. 1st iteration chooses 1st column, 2nd goes to 2nd
column and so on.

It is convenient to use a Table Map when you have several columns and many rows so it perfectly
fits into the screen. For example you may have several alternative configuration sections and want to
use them depending on the situation. In the example below we have several sites (Testing, QA, Prod)
each having own Url, Login etc. So we want to quickly switch between sites when working with test.

Range Map

Range map contains no in-place data, but defines a region in the external spreadsheet to read
information from.

A Range map definition contains a number of required parameters:

v 5.2 27

Contents

• fileName Path to file containing data. It may point to .xls, .xlsx or .csv file. If when it is empty
we assume that data is stored in the same .rvl.xls spreadsheet as the script.

• sheetName Excel Sheet name. May be empty for .csv spreadsheets.
• fromRow 0-based index of the first row containing data. Usually first row is assigned as a header
containing column names.

• fromCol 0-based index of the first column containing data.
• toRow final row index. If set to -1 then final row is detected automatically (as last row containing
some data in the 1st column)

• toCol final column index. If set to -1 then final column is detected automatically as last column
containing data in the 1st row.

Also there is a hidden parameter:

• hasColumnNames boolean. By default it is truemeaning that 1st rows is assumed to contain
column names. Once it is false the columns will have no names and may only be accessed
by 0-based index.

Data in the Range map is assumed to be similar to Rows map, but defined externally. Looping is
done by rows. Typical external file containing data may look like that:

Database Map

A Database map contains no in-place data, but defines a connection to the database result set.

The Database map definition contains two parameters:

• connectionString ADO connection string.

v 5.2 28

Contents

• query usually it is an SQL query to execute.

connectionString parameter allows accessing wide variety of different database sources. You may
learn ore here: https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/connectionstring-property-ado.

Some samples of typical ADO connection string values:

Microsoft Access

Provider=MSDASQL; Driver={Microsoft Access Driver (*.mdb)}; DBQ=C:\path\filename.mdb;

Microsoft Excel

Provider=MSDASQL; Driver={Microsoft Excel Driver (*.xls)}; DBQ=C:\path\filename.xls;

Microsoft Text

Provider=MSDASQL; Driver={Microsoft Text Driver (*.txt; *.csv)}; DBQ=C:\path\;

An example below refers to ODBC Data Source defined as follows:

v 5.2 29

https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/connectionstring-property-ado

Contents

Loops

Loops serve several needs in RVL:

1. Iterate through Maps to make data-driven testing easier.
2. Allows you to repeat a set of actions for a given number of iterations.
3. Lets you repeat a loop body while some Condition is satisfied.

Loop Map

A Map allows both reading script data from the table defined in the same script or from external data
source such as spreadsheet, file or database. Once a Map is defined, the loop is the simplest way of
traversing it.

Flow Type Object Action ParamName ParamType ParamValue

Loop Map MapName
… … … … …

End

Where MapName should be name of the map declared earlier in the same script.

The loop goes through either the map rows or through the map columns depending on the type of
map:

• For Rows, Range or Database type of Map, the loop goes through rows. I.e. 1st iteration
points to 1st Row, then 2nd iteration points to 2nd row etc.

• For Columns and Table types of Map, the iteration goes through the columns.

Loop Variable

Flow Type Object Action ParamName ParamType ParamValue

Loop Variable VarName from number 1
Param to number 10
… … … … …

v 5.2 30

Contents

Flow Type Object Action ParamName ParamType ParamValue

End

Where:

• VarName is an optional name of variable. It may be avoided if the goal is just to do specified
number of iterations. If VarName is set, then the corresponding variable is assigned with the
from value and incremented up to the to value throughout the loop. If VarName refers to an
existing local or global variable then it is used, otherwise a local variable named VarName is
created.

• from initial value of the loop variable

• to final value of the loop variable

• step optional, default is 1. Loop step to increment in each iteration.

Loop Condition

Loop repeats while condition is satisfied (i.e. while(someCondition)).

RVL Object

RVL Object

Some common tasks related to script execution, such as calling scripts, executing separate sheets,
returning, exiting and bailing out is served by RVL.

Actions

DoPlayScript

DoPlayScript(/**String*/scriptPath, /**String*/sheetName)

Play RVL script using specified

• scriptPath {/**string*/}: Path to script

• sheetName {/**string*/}: Excel sheet containing the script

v 5.2 31

Contents

Exit

Exit(/**String*/ message, /**Boolean*/isError)

Break execution at the specified line

• message {/**string*/}: Exit message

• isError {/**boolean*/}: Specify ‘false’ if you want just exit without exit message

Return

Return(/**String*/ message)

Return from specified line. This method should be called from within RVL

• message {/**string*/}: Return message

DoPlaySheet

DoPlaySheet(/**String*/sheetName)

Run current script from specified sheet

• sheetName {/**string*/}: Sheet Name

Properties

CurrentScriptPath

** GetCurrentScriptPath() **

Return path to currently executed .rvl.xls file

CurrentScriptSheet

** GetCurrentScriptSheet() **

Return sheet name of the currently executed .rvl.xls file

Map Object

Map Object

Represents an RVL Map object and all its operations. The same operations are used by the RVL
runtime implicitly to read the cell value or iterate through the Map.

v 5.2 32

Contents

Actions

DoMoveToRow

DoMoveToRow(/**Number*/ colInd)

Moves to a given row.

rowInd Row index (or name) to set active.

DoSequential

DoSequential()

Advances to the next row in the range. The range is either set by SetRange or it is the default range
that includes all rows on the sheet except first row which is considered to contain column names. When
the end of the range is reached, DoSequential rewinds back to the first row in the range and returns
‘false’.

Returns ‘false’ if being called when active row is the last row or the spreadsheet is not attached, ‘true’
- otherwise.

DoMoveToColumn

DoMoveToColumn(/**Number|String*/colInd)

Moves to a given column.

colInd Column index (or name) to set active.

DoMoveToFirstColumn

DoMoveToFirstColumn()

Moves to a first column in the map.

DoMoveToFirstRow

DoMoveToFirstRow()

Moves to a first row in the map.

DoMoveToLastColumn

DoMoveToLastColumn()

Moves to a last column in the map.

v 5.2 33

Contents

DoMoveToLastRow

DoMoveToLastRow()

Moves to a last row in the map.

Properties

Cell

** GetCell(/**Number|String*/ columnId, /**Number*/ rowId) **

Gets a cell value by its coordinates. It returns the current cell value after DoSequental or DoRandom
if the parameters are not set.

[columnId] Column index or name. If not set ActiveColumn is used.

[rowId] Row index. If not set ActiveRow is used.

ColumnCell

** GetColumnCell(/**Number*/ rowId) **

Gets cell value by its coordinates. Returns current cell value after DoSequental. If not set ActiveCol-
umn is used.

[rowId] Row index. If not set ActiveRow is used.

ColumnCount

** GetColumnCount() **

Gets columns count.

Returns Number of columns in the spreadsheet.

ColumnIndexByName

** GetColumnIndexByName(/**String*/name) **

Gets column name.

name Column name.

Returns column index if found, or -1.

v 5.2 34

Contents

ColumnName

** GetColumnName(/**Number*/ ind) **

Gets column name.

ind Column index.

Returns Name of column in the spreadsheet.

RowCount

** GetRowCount() **

Gets rows count.

Returns Number of rows in the spreadsheet.

RowIndexByName

** GetRowIndexByName(/**String*/name) **

Gets row name.

name Row name.

Returns row index if found, or -1.

CurrentRowIndex

** GetCurrentRowIndex() **

Get zero based current row index.

EOF

** GetEOF() **

Is current position is beyond the map boundaries range.

RowCell

** GetRowCell(/**Number|String*/ columnId) **

Gets cell value for current row. Returns current cell value after DoSequental. ActiveRow is used.

[columnId] Column index or name. If not set ActiveColumn is used.

v 5.2 35

Contents

RowName

** GetRowName(/**Number*/ ind) **

Gets row name.

ind Row index.

Returns Name of row in the map.

Value

** GetValue(/**Number|String*/ rowOrColumnNameOrId) **

Gets cell value by its name or id. Returns current cell value after DoSequental. If it is Rows or Table
then the parameter needs to be a column name or index, and ActiveRow is used. If it is Columns then
the parameter needs to be a row name or index, and ActiveRow is used.

[rowOrColumnNameOrId] Row or Column index or Name.

v 5.2 36

Page 2 of 2 © Copyright 2006-2017, Inflectra Corporation This document contains Inflectra proprietary information

Legal Notices

This publication is provided as is without warranty of any kind, either express or implied, including, but not

limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

This publication could include technical inaccuracies or typographical errors. Changes are periodically

added to the information contained herein; these changes will be incorporated in new editions of the

publication. Inflectra Corporation may make improvements and/or changes in the product(s) and/or

program(s) and/or service(s) described in this publication at any time.

The sections in this guide that discuss internet web security are provided as suggestions and guidelines.

Internet security is constantly evolving field, and our suggestions are no substitute for an up-to-date

understanding of the vulnerabilities inherent in deploying internet or web applications, and Inflectra cannot

be held liable for any losses due to breaches of security, compromise of data or other cyber-attacks that

may result from following our recommendations.

Rapise® and Inflectra® are either trademarks or registered trademarks of Inflectra Corporation in the

United States of America and other countries. All other trademarks and product names are property of

their respective holders.

Please send comments and questions to:

Technical Publications

Inflectra Corporation

8121 Georgia Ave, Suite 504

Silver Spring, MD 20910-4957

U.S.A.

support@inflectra.com

mailto:support@inflectra.com

	rvl_5.2.pdf
	About
	Columns
	Comments
	Conditions
	Actions
	Variables
	Assertions
	If-Else
	Parameters
	Maps
	Loops
	RVL Object
	Map Object

